
SANDIA REPORT
SAND2019-1967
Unlimited Release
Printed February 22, 2019

SST-GPU: An Execution-Driven
CUDA Kernel Scheduler and
Streaming-Multiprocessor
Compute Model

M. Khairy, M. Zhang, R. Green, and T. Rogers
Accelerator Architecture Lab
Purdue University
West Lafayette, IN 47907
khairy2011@gmail.com, zhan2308@purdue.edu, rgreen.dev@gmail.com, timrogers@purdue.edu

S.D. Hammond, R.J. Hoekstra, and C. Hughes
Center for Computing Research
Sandia National Laboratories
Albuquerque, NM 87185
{sdhammo, rjhoeks, chughes}@sandia.gov

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

D
E
P
A

R
T
M
ENTOFEN

E
R
G
Y

• •U
N
I
T
E
D

STATES OF
A
M

E
R
I
C
A

2

SAND2019-1967
Unlimited Release

Printed February 22, 2019

SST-GPU: An Execution-Driven
CUDA Kernel Scheduler and Streaming-Multiprocessor

Compute Model

M. Khairy1, M. Zhang1, R. Green1,
S. Hammond2, R.J. Hoekstra2, T. Rogers1, and C. Hughes2

1AALP Research Group, Purdue University, West Lafayette, IN 47907
2Center for Computing Research, Sandia National Laboratories, Albuquerque, NM 87185

Abstract

Programmable accelerators have become commonplace in modern computing systems. Advances
in programming models and the availability of massive amounts of data have created a space for
massively parallel acceleration where the context for thousands of concurrent threads are resident
on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis among several mas-
sively parallel computing cores. The design of future supercomputers relies on an ability to model
the performance of these massively parallel cores at scale.

To address the need for a scalable, decentralized GPU model that can model large GPUs, chiplet-
based GPUs and multi-node GPUs, this report details the first steps in integrating the open-source,
execution driven GPGPU-Sim into the SST framework. The first stage of this project, creates two
elements: a kernel scheduler SST element accepts work from SST CPU models and schedules it
to an SM-collection element that performs cycle-by-cycle timing using SSTs MemHierarchy to
model a flexible memory system.

3

Acknowledgment

We would like to thank Gwen Voskuilen for her help with MemHierarchy and recommenda-
tions on debugging problems with the NIC and interconnect. We would also like to thank Arun
Rodrigues and Scott Hemmert for their support and help in defining the scope of the project.

4

Contents

1 Introduction 7

2 Scheduler Component 9

3 Streaming-Multiprocessor Component 13

4 Conclusion 17

References 18

5

List of Figures

1.1 High-level CPU/GPU interaction model . 7

2.1 SST Element architecture for kernel/CTA scheduler and SMs components 11

2.2 Centralized GPU Scheduler component . 11

3.1 SST Link and IPCTunnels for functional model support . 13

3.2 Timing and memory model for SMs component . 14

6

Chapter 1

Introduction

With the rise of General-Purpose Graphics Processing Unit (GPGPU) computing and compute-
heavy workloads like machine-learning, compute accelerators have become a necessary compo-
nent in both high-performance supercomputers and datacenter-scale systems. The first exascale
machines are expected to heavily leverage the massively parallel compute capabilities of GPUs or
other highly parallel accelerators [4]. As the software stack and programming model of GPUs and
their peer accelerators continue to improve, there is every indication that this trend will continue.
As a result, architects that wish to study the design of large-scale systems will need to evaluate
the effect their techniques have using a GPU model. However, the focus of all publicly available
cycle-level simulators like GPGPU-Sim [2] is on single-node performance. In order to truly study
the problem at scale, a parallelizable, multi-node GPU simulator is necessary.

CPU Model GPU Model

CPU Memory GPU Memory Shared CPU/GPU Memory

Command/
Response

PCIe/NVLINK

CPU Model GPU Model

Figure 1.1: High-level CPU/GPU interaction model

Figure 1.1 depicts the current CPU/GPU model co-processor model. On the left is the common
high-performance, discrete GPU configuration, where the CPU and GPU have separate memory
spaces and are connected via either PCIe or a high-bandwidth link, like NVLink. The right shows
the APU model where the CPU and GPU share the same memory. Note that in even in the discrete
memory case, modern memory translation units allow the CPU and GPU to share the same address
space, although the memories themselves are discrete.

In this report we will detail a model that is capable of simulating both discrete and unified
memory spaces by leveraging the MemHeirarchy interface in SST [5]. This report details our
efforts to integrate the functional and streaming multiprocessor core models from the open-source
simulator GPGPU-Sim into SST.

7

This page intentionally left blank.

Chapter 2

Scheduler Component

The first step in integrating GPGPU-Sim into SST is to handle the interaction with an SST
CPU component. Since GPUs today function solely as co-processors, functionally executing
GPU-enabled binaries requires the CPU to initialize and launch kernels of work to the GPU. In
our model, the GPU is constructed out of two discrete SST components – a scheduler and a SM
block [1]. When CUDA functions are called from the CPU component, they are intercepted and
translated into messages that are sent over SST links to the GPU (along with the associated pa-
rameters). Table 2.1 enumerates the CUDA API calls currently intercepted and sent to the GPU
elements. These calls are enough to enable the execution of a number of CUDA SDK kernels,
DoE proxy apps as well as a collection of Kokkos Unit tests. Table 2.2 lists the number of Kokkos
unit tests that pass with our current implementation of SST-GPU, which is about 60%. There is
ongoing work with the PTX parser to increase the number of running kernels.

Table 2.1: Intercepted CUDA API Calls Forwarded to GPU Model

cudaRegisterFatBinary
cudaRegisterFunction

cudaMalloc
cudaMemcpy
cudaConfigureCall
cudaSetupArgument
cudaFree
cudaLaunch
cudaGetLastError
cudaRegisterVar

cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags

Aside from the basic functional model provided by GPU-SST, an initial performance model
has also been developed. Figure 2.1 details the overall architecture. A CPU component (Ariel
in the initial implementation) is connected via SST links to 2 GPU components: the SMs, which
implement the timing and functional model for the GPU cores, and a centralized kernel and CTA
scheduler (GPUSched). When CUDA calls are intercepted from the CPU, messages are sent to
both the SMs and the GPU scheduler. Messages related to memory copies and other information
necessary to populate the GPU functional model are sent directly to the SMs element, since the
functional model for executing the GPU kernels lives inside the SMs element. Calls related to
enqueuing kernels for execution are sent to the GPU scheduler element, which co-ordinates the

9

Table 2.2: Functionally Passing Kokkos Unit Tests
Kernel Name GPGPU-Sim GPGPU-Sim/SST

abs double OK OK
abs mv double OK OK
asum double OK OK
axpby double OK OK
axpby mv double OK OK
axpy double OK OK
axpy mv double OK OK
dot double OK OK
dot mv double OK OK
mult double OK OK
mult mv double OK OK
nrm1 double OK OK
nrm1 mv double OK OK
nrm2 double OK OK
nrm2 mv double OK OK
nrm2 squared double OK OK
nrm2 squared mv double OK OK
nrminf double FAILED PREVIOUS FAILED
nrminf mv double FAILED PREVIOUS FAILED
reciprocal double FAILED PREVIOUS FAILED
reciprocal mv double FAILED PREVIOUS FAILED
scal double OK OK
scal mv double OK OK
sum double OK OK
sum mv double OK OK
update double OK OK
update mv double OK OK
gemv double FAILED PREVIOUS FAILED
gemm double FAILED PREVIOUS FAILED
sparse spgemm double int int TestExecSpace FAILED PREVIOUS FAILED
sparse spadd double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse gauss seidel double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse block gauss seidel double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse crsmatrix double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse blkcrsmatrix double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse replaceSumIntoLonger double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse replaceSumInto double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse graph color double int int TestExecSpace NOT PARSED PREVIOUS FAILED
sparse graph color d2 double int int TestExecSpace FAILED PREVIOUS FAILED
common ArithTraits NOT PARSED PREVIOUS FAILED
common set bit count FAILED PREVIOUS FAILED
common ffs OK OK
batched scalar serial set double double OK FAILED
batched scalar serial scale double double OK OK
batched scalar serial gemm nt nt double double OK OK
batched scalar serial gemm t nt double double OK OK
batched scalar serial gemm nt t double double OK OK
batched scalar serial gemm t t double double OK OK
batched scalar serial trsm l l nt u double double OK OK
batched scalar serial trsm l l nt n double double FAILED PREVIOUS FAILED
batched scalar serial trsm l u nt u double double OK OK
batched scalar serial trsm l u nt n double double FAILED PREVIOUS FAILED
batched scalar serial trsm r u nt u double double OK OK
batched scalar serial trsm r u nt n double double FAILED PREVIOUS FAILED
batched scalar serial lu double OK FAILED
batched scalar serial gemv nt double double OK OK
batched scalar serial gemv t double double OK OK
batched scalar serial trsv l nt u double double OK FAILED
batched scalar serial trsv l nt n double double FAILED PREVIOUS FAILED
batched scalar serial trsv u nt u double double OK FAILED
batched scalar serial trsv u nt n double double FAILED PREVIOUS FAILED
batched scalar team set double double OK FAILED
batched scalar team scale double double OK OK
batched scalar team gemm nt nt double double OK OK
batched scalar team gemm t nt double double OK OK
batched scalar team gemm nt t double double OK OK
batched scalar team gemm t t double double OK OK
batched scalar team trsm l l nt u double double OK OK
batched scalar team trsm l l nt n double double FAILED PREVIOUS FAILED
batched scalar team trsm l u nt u double double OK OK
batched scalar team trsm l u nt n double double FAILED PREVIOUS FAILED
batched scalar team trsm r u nt u double double OK OK
batched scalar team trsm r u nt n double double FAILED PREVIOUS FAILED
batched scalar team lu double OK FAILED
batched scalar team gemv nt double double OK OK
batched scalar team gemv t double double OK OK

10

launching of CTAs on the SMs, e.g. cudaConfigureCall and cudaLaunch.

Figure 2.1: SST Element architecture for kernel/CTA scheduler and SMs components

As CTAs complete on the SMs, messages are sent back to the GPU scheduler element, which
pushes new work to the SMs from enqueued kernels as needed. Memory copies from the CPU to
GPU address space are handled on a configurable page-size granularity, similar to how conven-
tional CUDA unified memory handles the transfer of data from CPU to GPU memories.

Launch Command

CTA Launch
Command

GPUSched Element

Ke
rn

el
H

an
dl

er

K3 K4 K5

Kernel Queue

Tick Handler

CTA Handler

SM1 K1

SM2 K2

… …

SM16

SM Map Table

Tick Signal

CTA Finish
Command

Figure 2.2: Centralized GPU Scheduler component

The centralized GPU scheduler receives kernel launch commands from the CPU, then issues
CTA launch commands to the SMs. The scheduler also receives notifications from the SMs when
the CTAs finish. The reception of kernel launch and CTA complete notifications are independent,
therefore we designed a different handler for each type of message. Figure 2.2 shows the design
of the centralized kernel and CTA Scheduler. The kernel handler listens to calls from a CPU com-
ponent and pushes kernel launch information to the kernel queue when it receives kernel configure
and launch commands. The SM map table contains CTA slots for each of the SMs, which is re-
served when launching a CTA and released when a message indicating that a CTA has finished
is received from the SMs. The scheduler clock ticks trigger CTA launches to SMs, when space is
available and there is a pending kernel. On every tick, the scheduler issues a CTA launch command

11

for currently unfinished kernels if any CTA slot is available or tries to fetch a new kernel launch
from kernel queue. The CTA handler also waits for SMs to reply the CTA finish message, so that
CTA slots in the SM map table may be freed.

12

Chapter 3

Streaming-Multiprocessor Component

To support the GPGPU-Sim functional model, a number of the simulator’s overloaded CUDA
Runtime API calls were updated. A number of functions that originally assumed the application
and simulator were within same address space now support them being decoupled. Initialization
functions, such as cudaRegisterFatBinary, now take paths to the original application to obtain
the PTX assembly of CUDA kernels.

Figure 3.1: SST Link and IPCTunnels for functional model support

Supporting the functional model of GPGPU-Sim also requires transferring values from the
CPU application to the GPU memory system. This is solved by leveraging the inter-process com-
munication tunnel framework from SST-Core, as shown in 3.1. Chunks of memory are transferred
from the CPU application to the GPU memory system at the granularity of a page (4KiB). The
transfer of pages is a blocking operation, therefore all stores to the GPU memory system must be
completed before another page is transferred or another API call is processed.

To model GPU performance, the memory system of the public GPGPU-Sim is completely re-
moved. Instead, all accesses to GPU memory are sent though SST links to the MemHierarchy
interface. As Figure 3.2 shows, a multi-level cache hierarchy is simulated with the shared L2

13

sliced between different memory partitions, each with its own memory controller. Several backend
timing models have been configured and tested, including SimpleMem, SimpleDRAM, Timing-
DRAM, and CramSim [3]; CramSim will be used to model the HBM stacks in the more detailed
performance models. We have created an initial model for the GPU system similar to that found in
an Nvidia Volta. The configuration for the GPU, CramSim and Network components is shown in
Listing 3.1.

Figure 3.2: Timing and memory model for SMs component

14

Listing 3.1: Sample SST-GPGPU Configuration
[CPU]
clock: 2660MHz
num_cores: 1
application: ariel
max_reqs_cycle: 3

[ariel]
executable: ./vectorAdd
gpu_enabled: 1

[Memory]
clock: 200MHz
network_bw: 96GB/s
capacity: 16384MiB

[Network]
latency: 300ps
bandwidth: 96GB/s
flit_size: 8B

[GPU]
clock: 1200MHz
gpu_cores: 80
gpu_l2_parts: 32
gpu_l2_capacity: 192KiB
gpu_cpu_latency: 23840ps
gpu_cpu_bandwidth: 16GB/s

[GPUMemory]
clock: 1GHz
network_bw: 32GB/s
capacity: 16384MiB
memControllers: 2
hbmStacks: 4
hbmChan: 4
hbmRows: 16384

[GPUNetwork]
latency: 750ps
bandwidth: 4800GB/s
linkbandwidth: 37.5GB/s
flit_size: 40B

15

This page intentionally left blank.

Chapter 4

Conclusion

This report has detailed the first phase of the SST-GPU project, where the execution-driven
functional and performance model of a GPU had been integrated SST. Initial results demonstrate
significant coverage of applications. The next phase of the project will focus on further disaggre-
gating the GPU to enable truly scaled GPU performance in a multi-process MPI simulation.

17

This page intentionally left blank.

References

[1] Volta v100 white paper. Technical report, Nvidia, 2017.

[2] Tor M. Aamodt, Wilson W. L. Fung, Inderpreet Singh, Ahmed El-Shafiey, Jimmy Kwa, Tayler
Hetherington, Ayub Gubran, Andrew Boktor, Tim Rogers, Ali Bakhoda, and Hadi Jooybar.
Gpgpu-sim 3.x manual. http://gpgpu- sim.org/manual/index.php/Main, June 2016.

[3] Michael B. Healy and Seokin Hong. Cramsim: Controller and memory simulator. In Proceed-
ings of the International Symposium on Memory Systems, MEMSYS ’17, pages 83–85, New
York, NY, USA, 2017. ACM.

[4] Timothy Prickett Morgan. The roadmap ahead for exascale hpc in the us.
https://www.nextplatform.com/2018/03/06/roadmap-ahead-exascale-hpc-us, March 2018.

[5] Arun Rodrigues, Richard Murphy, Peter Kogge, and Keith Underwood. The structural simu-
lation toolkit: A tool for bridging the architectural/microarchitectural evaluation gap. Internal
Report SAND2004-6238C, 2004.

[6] Christian Trott, Mark Hoemmen, Mehmet Deveci, and Kyungjoo Kim. Kokkos c++ perfor-
mance portability programming ecosystem: Math kernels - provides blas, sparse blas and graph
kernels. https://github.com/github/open-source-survey, 2019.

19

DISTRIBUTION:

1 MS 1318 Robert J. Hoekstra, 01422
1 MS 1319 Simon D. Hammond, 01422
1 MS 1319 Arun F. Rodrigues, 01422
1 MS 1319 Gwendolyn R. Voskuilen, 01422
1 MS 0899 Technical Library, 9536 (electronic copy)

20

v1.40

21

22

